Mycoplasma ovis
What is it and why do we care?

American Sheep Industry Convention
San Antonio, TX
February 1, 2018

M. A. Highland, DVM, PhD, Dipl. ACVP
Veterinary Medical Officer-Researcher
USDA-ARS-Animal Disease Research Unit
Pullman, WA
What is *Mycoplasma ovis*?

- *Eperythrozoon ovis* (“Epe”) – prior to 2004
- Hosts: domestic sheep and goats, deer, reindeer
- Infects the surface of RBCs (resembles basophilic stippling)
Mycoplasma ovis

• Worldwide distribution
 – Australia*, NZ, Turkey, Norway, Japan
 – Reports of infection/disease in U.S. rare

• Transmission
 – Biting insects and ticks; needle reuse
 – Transplacental transmission – no data in literature
Mycoplasma ovis

- **Clinical symptoms**
 - Jaundice +/- red urine (hemolysis), weight loss, ill-thrift (decreased weight gain, stunted growth), bottle jaw, neurological signs (anemia/hypoxia), diarrhea*

- Resemblance to:
 - Enteric parasites (barber pole worm)
 - Vitamin/mineral deficiency (copper, thiamine, E/selenium)

- Often **subclinical**......consequence of this?
 - Meat and fiber production effects in the United States?
 - Carcass condemnation (jaundice)?
Mycoplasma ovis

- **Diagnosis**
 - Blood smear (easily mistaken for stippling)
 - Complete blood count: ANEMIA
 - Serum chemistry: +/- hypoglycemia
 - Depends on how long blood sample sits and bacterial load
 - PCR
 - DNA isolated from whole blood, plasma, serum
Mycoplasma ovis
(ongoing research - data analysis stage)

ARS-Range Sheep Production Efficiency Research Unit
U.S. Experiment Sheep Station

- Large number of accessible sheep for blood collection
- Ability to repeat sample and follow animals lifelong
- Production records and genetic information

Repeat sampled ewes and lambs over 3 years (3x per year)

- Analyzing for impacts of infection on ewe and lamb production (Dr. Bret Taylor)
- Passive transfer does occur, although inefficient (~42% ewe prevalence, 5.1% pre-suckle lamb prevalence)
Mycoplasma ovis
(Ongoing research - data analysis stage)

NAHMS sera samples from 2001 and 2011
• Distribution and prevalence in the U.S.
• Operation impacts on prevalence

(NAHMS sample data analysis: Dr. Natalie Urie)
Thanks to.....

ADRU-ARS-USDA and WSU
- Don Knowles
- Nic Durfee
- Paige Grossman
- Ralph Horn & James Allison
- Stephen White & Michelle Mousel

U.S.S.E.S. Dubois, ID
- Bret Taylor
- Animal Care Staff

USDA-APHIS (NAHMS)
- Katherine Marshall
- Natalie Urie.......
MYCOPLASMA OVIS IN U.S. SHEEP FLOCKS:
SEROPREVALENCE AND ASSOCIATED RISK FACTORS

NATALIE URIE
VETERINARY EPIDEMIOLOGIST
MONITORING AND MODELING
USDA, APHIS, VS
JANUARY 2018
NAHMS National Studies

Key Information

<table>
<thead>
<tr>
<th>Commodities are surveyed on a rotating basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study objectives are set in partnership with industry and other stakeholders</td>
</tr>
<tr>
<td>All studies depend on voluntary participation</td>
</tr>
<tr>
<td>All studies utilize a statistically valid nationally representative sample</td>
</tr>
</tbody>
</table>
NAHMS National Studies

Beef Cow-Calf Goats Catfish Beef feedlot Swine Layers Ranched Bison Equine Beef Cow-Calf

Poultry Sheep Small-Scale Operations Farmed Cervids Dairy

NAHMS Serum Samples Tested

<table>
<thead>
<tr>
<th>Study Year</th>
<th># Sheep</th>
<th># Operations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7,161</td>
<td>623</td>
</tr>
<tr>
<td>2011</td>
<td>12,512</td>
<td>559</td>
</tr>
<tr>
<td>Total</td>
<td>19,673</td>
<td>1,182</td>
</tr>
</tbody>
</table>
Sheep-Level *Mycoplasma ovis* Seroprevalence

Combined 2001 and 2011 Seroprevalence: 30.0%

- **Herded/open range**: 32.2% (2001) to 37.3% (2011)
- **Fenced range**: 29.3% (2001) to 33.2% (2011)
- **Farm flock**: 25.2% (2001) to 30.4% (2011)
- **Overall**: 27% (2001) to 32% (2011)
Operation-Level Seroprevalence

Operations that had at least 1 *M. ovis* positive sample
- 2001: 77.7%
- 2011: 88.2%
Overall: 82.7%

Mean within-flock seroprevalence
- 2001: 34.6%
- 2011: 34.7%
Overall: 34.6%
Preliminary Risk Factors Associated with\textit{M. ovis} Detection

Flock size
Region
Year of blood collection
Requirement of preventive health practices
Public land grazing
Vaccinations
Operations with NO preventive health practices for new additions were \textbf{2.1 times} more likely to have \textit{M. ovis}.
M. ovis Detection by Grazing on Public Land

\[P = 0.0230 \]

Operations that placed sheep to graze on public land were **3.5 times** more likely to have M. ovis
M. ovis Detection by Vaccination Practices

\[P = 0.0243 \]

Operations that administered vaccines were \textbf{1.7 times} more likely to have *M. ovis*

This does not mean that vaccines spread or cause *M. ovis.*
Preliminary Risk Factors Associated with *M. ovis* Within-Flock Seroprevalence

- Flock size
- Region
- Year of blood collection
- Any ewes that aborted during the study years
- Disinfection of sheering equipment between sheep
M. ovis Within-Flock Seroprevalence by Abortion Presence

\[P = 0.0437 \]

Operations WITH abortions had a 1.12 times higher within-flock M. ovis seroprevalence
M. ovis Within-Flock Seroprevalence by Sheering Disinfection Practices

Operations that ALWAYS disinfected shearing equipment had a **1.7 times** higher M. ovis seroprevalence

This does not mean that disinfecting shearing equipment spreads or causes M. ovis
Thank you to:

US Sheep Producers
USDA Agricultural Research Service
American Sheep Industry Association