The American Lamb Board focuses on providing a consistent and high quality product to our consumers.

Carcass Quality Research focuses on:

- Flavor
- Palatability and Freshness
- Nutritional benefits
- Culinary Versatility
Quantifying the economic impact of excessively fat lambs in the U.S. lamb processing sector

University of Wyoming
Jaelyn Whaley*, M.S. Candidate
Dr. Warrie Means†, Interim Associate Dean
Dr. John Ritten‡, Associate Professor
Dr. Whit Stewart*, Sheep Extension Specialist

*Department of Animal Science
†College of Agriculture and Natural Resources
‡Department of Agricultural and Applied Economics
OBJECTIVES

1) Collect carcass measurements to estimate quantity and seasonal distribution of carcass characteristics during peak “fat-prone” harvesting periods.

2) Determine fat losses in cutout data and associated plant level economic data.

3) Economic modeling to determine down-stream industry costs.
ImageJ image analysis software can be used to capture ribeye area (REA), 12th rib fat (12RF), and bodywall thickness (BWT) at production speed.
Methods

Carcass Characteristics
- Ribeye Area
- Hot Carcass Weight
- USDA Yield/Quality Grade
- Camera Yield Grade
- Calculated Yield Grade
- Backfat
- Bodywall Thickness
- %BCTRC

Associated Plant Inefficiencies
- Fabrication Floor:
 - Total Trim (lbs.)
- Harvest Floor:
 - Machine Malfunctions
 - Labor inefficiencies
 - Single lot processing time

Plant Economics
- Monte Carlo Model
- Partial Budget comparing income/expenses

Percentage of Boneless Closely Trimmed Retail Cuts (%BCTRC) is an approximation of the amount of edible red meat yield.
Preliminary Descriptive Statistics

<table>
<thead>
<tr>
<th></th>
<th>Number of Carcasses</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Range</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hot Carcass Weight (kg)</td>
<td>7357</td>
<td>23.5</td>
<td>184.5</td>
<td>161</td>
<td>89.45</td>
</tr>
<tr>
<td>USDA Yield Grade</td>
<td>7208</td>
<td>No Grade</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Camera Yield Grade</td>
<td>7379</td>
<td>-</td>
<td>8.9</td>
<td>8.9</td>
<td>4.45</td>
</tr>
<tr>
<td>Calculated Yield Grade</td>
<td>7378</td>
<td>0.4</td>
<td>13.45</td>
<td>13.05</td>
<td>3.37</td>
</tr>
<tr>
<td>Ribeye Area (in<sup>2</sup>)</td>
<td>7379</td>
<td>0.825</td>
<td>5.24</td>
<td>4.41</td>
<td>2.61</td>
</tr>
<tr>
<td>12<sup>th</sup> Rib Fat (in)</td>
<td>7378</td>
<td>0</td>
<td>1.31</td>
<td>1.31</td>
<td>0.32</td>
</tr>
<tr>
<td>Body Wall Thickness (in)</td>
<td>7379</td>
<td>0.23</td>
<td>2.99</td>
<td>2.76</td>
<td>1.25</td>
</tr>
<tr>
<td>%BCTR</td>
<td>7356</td>
<td>27.26</td>
<td>55.83</td>
<td>28.57</td>
<td>43.69</td>
</tr>
</tbody>
</table>
The Next Steps

◆ Continued carcass data collection (December-April)

◆ Economic modeling

■ Partial Budget

 • Assessing income/cost during peak over-fat lamb season (summer) vs. the spring and fall seasons.

 • Factors may include, but are not limited to:
 - Increased labor costs: more labor for larger carcasses, higher turnover during fat-prone months, overtime
 - Maintenance costs: machinery depreciation, machinery repair/maintenance, cleaning costs
 - Efficiency costs: number of lambs processed, total pounds of sellable red meat, longer processing times on larger carcasses, trucking inefficiencies
 - Cutout: Are the carcasses generating profit based on what lambs are bought for live?
Discovering the capabilities of Rapid Evaporative Ionization Mass Spectrometry (REIMS) as a novel mass spectrometry method to detect off/unacceptable lamb flavors.

Lamb Flavor Phase II - Colorado State University

1 Center for Meat Safety & Quality, Department of Animal Sciences, Colorado State University, Fort Collins, CO 80523
2 Department of Animal and Food Sciences, Texas Tech University, Lubbock, TX 79409 Phone: (806) 834-4565
3 Department of Horticulture, Colorado State University, Fort Collins, CO 80523

Cody L. Gifford1
Dale R. Woerner2
Adam Heuberger3
Jessica Prenni3
Jennifer N. Martin1
Terry E. Engle1
Robert J. Delmore1
Keith E. Belk1
Familiarity and Preference

- Research in other countries has demonstrated that consumers differ in their acceptance of various sheep-specific meat flavor notes depending upon past eating experiences (Sanudo et al., 2000; Prescott et al., 2001).
- Consumers who are accustomed to eating lamb or mutton with a particular flavor profile seem to prefer ovine meat products with a familiar flavor (Sanudo et al., 2000; Prescott et al., 2001).
- Consumers who seldom eat lamb or mutton tend to exhibit the greatest aversion to sheep-specific meat flavor notes, sometimes finding even mildly detectable levels of these flavors unacceptable (Prescott et al., 2001; Watkins et al., 20).
- National Lamb Quality Audit (Hoffman, 2016)
- “Eating Satisfaction” most important quality trait for lamb.
- Majority of consumers (71%) are willing to pay a premium for improved “Eating Satisfaction”.
- 68% of consumers who eat lamb want it to be from the US - up from 40% in 2011.
Rapid Evaporative Ionization Mass Spectrometry (REIMS)

- New technique allowing for characterization of biological tissues
- Provides molecular fingerprint
 - Real-time analysis (seconds)
 - No sample preparation
 - Hand-held sampling device
- Histological-based tissue identification with 90-98% accuracy (Balog et al., 2013) in well defined treatment groups

Source: Balog et al. (2016)
Factor Scores from Trained Sensory Attributes Colored for a 3-Level Sensory Classification

Factor Scores from Trained Sensory Attributes Colored for a 2-Level Sensory Classification
Least squares means of carcass traits among sheep age classifications.\(^1\)

<table>
<thead>
<tr>
<th>Treatment Group</th>
<th>n</th>
<th>Hot Carcass Weight (kg)</th>
<th>Adj. 12(^{th}) Rib Fat Thickness (cm)</th>
<th>Body Wall Thickness (cm)</th>
<th>Ribeye Area (cm(^2))</th>
<th>Marbling(^2) at 12(^{th}) Rib</th>
<th>Calculated Yield Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age(^1)</td>
<td></td>
<td>(P<0.0001)</td>
<td>(P<0.0001)</td>
<td>(P<0.0001)</td>
<td>(P<0.0001)</td>
<td>(P<0.0001)</td>
<td>(P<0.0001)</td>
</tr>
<tr>
<td>Lamb</td>
<td>50</td>
<td>31.3(^b)</td>
<td>0.64(^b)</td>
<td>2.13(^b)</td>
<td>17.15(^b)</td>
<td>457.6(^b)</td>
<td>2.9(^a)</td>
</tr>
<tr>
<td>Yearling</td>
<td>50</td>
<td>40.5(^c)</td>
<td>0.88(^c)</td>
<td>2.64(^c)</td>
<td>18.82(^c)</td>
<td>518.0(^c)</td>
<td>3.9(^b)</td>
</tr>
<tr>
<td>Mutton</td>
<td>50</td>
<td>27.5(^a)</td>
<td>0.22(^a)</td>
<td>1.03(^a)</td>
<td>13.16(^a)</td>
<td>303.1(^a)</td>
<td>1.3(^c)</td>
</tr>
<tr>
<td>SEM(^2)</td>
<td></td>
<td>1.33</td>
<td>0.05</td>
<td>0.11</td>
<td>0.51</td>
<td>20.1</td>
<td>0.21</td>
</tr>
</tbody>
</table>

\(^{a-c}\)Least square means in the same column without a common superscript differ \((P < 0.05)\) due to treatment.

\(^1\)Age group defined as: Lamb = 0 Permanent Incisors, Yearling = 2 Permanent Incisors, Mutton = >2 Permanent Incisors.

\(^2\)Marbling score: 300=Slight\(^00\), 400=Small\(^00\), 500=Modest\(^00\).

\(^3\)Standard error of the least squares means.
Prediction of a 2-level Sensory Classification using Partial Least Squares-Linear Discriminant Analysis on Molecular Profiles of lean of sheep legs.

<table>
<thead>
<tr>
<th>Predicted Class</th>
<th>Positive</th>
<th>Neutral</th>
<th>Total</th>
<th>Sensitivity</th>
<th>Precision</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>13</td>
<td>5</td>
<td>18</td>
<td>72.2%</td>
<td>68.4%</td>
</tr>
<tr>
<td>Negative</td>
<td>6</td>
<td>5</td>
<td>11</td>
<td>45.5%</td>
<td>50.0%</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>10</td>
<td>29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall Prediction Accuracy 62.1%
Balanced Prediction Accuracy 58.9%
No. of PLS Components 2
Conclusions

- Multiple models were evaluated for prediction accuracy.
- Lamb Flavor ID was not statistically different between lamb, yearling and mutton carcasses.
- Mutton-like and green/hay-like off-flavor intensities are driving ‘negative’ sensory classifications among both 3-level and 2-level sensory groups.
- ‘Negative’ cluster for 3-level sensory classification were all lambs with numerically higher ratings of mutton-like off-flavor.
- Higher balanced prediction accuracies were observed from 3-age classifications (Lamb, Yearling, and Mutton), 4-age classifications (USDA Graded Lamb, Ungraded-Lamb, Yearling, and Mutton) and production background (Grain-finished or Grass-finished) models.
Industry Implications

- Use of REIMS is a unique platform to capture high resolution metabolic profiles faster and without lengthy sample preparation compared to other analytical approaches.
- REIMS is able to provide metabolite information in real-time, indicating high potential for its use in harvest facilities at production speed.
- Annotation and identification of specific compounds among metabolic data could improve understanding of flavor profiles that are being influenced by specific sheep flavor attributes.
(866) 327-LAMB (5262)

LambResourceCenter.com

Facebook.com/LambCheckoff