Contents:

1 Interrelationships of Traits Measured on Fine-wool Rams During a Central Performance Test
 C.J. Lupton, D.F. Waldron, and F.A. Pfeiffer

8 Effects of Supplementing Polyethylene Glycol to Goat Kids Grazing Sericea Lespedeza and Early Post-weaning Nutritive Plane Upon Subsequent Growth
 Roger C. Merkel, Arthur L. Goetsch, and Nissim Silanikove

14 Use of DNA Markers to Determine Paternity in a Multiple-Sire Mating Flock
 C.J. Lupton, D.N. Ueckert, T.L. Shay, and N.E. Cockett

18 Use of Lamb Vision System to Predict Carcass Value

25 Potential Associative Effects of Increasing Dietary Forage in Limit-fed Ewes Fed a 6% Fat Diet
 O. Kucak, B.W. Hess, P.A. Ludden, and D.C. Rule

34 Quebracho Tannin Influence on Nitrogen Balance in Small Ruminants and In-Vitro Parameters when Utilizing Alfalfa Forage
 K.E. Turner and J.P. Neel

44 An Investigation into the Risk Factors Associated with Clinical Mastitis in Colorado Sheep
 K.N. Forde, B.J. McCluskey, and K.S. Morgan

47 Weight Changes in Fall and Spring Lambing Ewes Grazing Fallow Wheat Fields During the Summer
 W.A. Phillips, F.T. McCollum, J. Volesky, and H.S. Mayeux

55 Effect of Ethanol Supplementation on In Vitro Digestion and VFA Production and Growth Performance of Newly Weaned Lambs
 J. Gould, E.J. Scholljegerdes, P.A. Ludden, D.C. Rule, and B.W. Hess

61 Growth and Reproductive Performance of Ewe Lambs Implanted with Zeranol after Weaning, but before Sexual Maturation
 B.M. Alexander, B.W. Hess, R.V. Lewis, R.H. Stobart, and G.E. Moss

65 Consumer Evaluation of Pre-Cooked Lamb
 John A. Fox, Londa S. Vander Wal, Prayong Udomvarapant, Donald H. Kropf,
 Elizabeth A.E. Boyle, and Curtis L. Kastner

69 Caprine Arthritis-Encephalitis: An Update
 A. de la Concha-Bermejillo

79 An Evaluation of Different Energy Supplements for Lambs Consuming Endophyte-free Tall Fescue
 B.W. Hess, J.E. Williams, and E.J. Scholljegerdes

83 Effects of the FecB Gene in Half-sib Families of Rambouillet-cross Ewes
 K.S. Schulze, D.F. Waldron, T.D. Willingham, D.R. Shelby, G.R. Engdahl, E.Gootwine,
 S. Yohefi, G.W. Montgomery, M.L. Tate, and E.A. Lord

89 The Effects of Energy Source and Ionophore Supplementation on Lamb Growth, Carcass Characteristics and Tenderness
 M.A. Murphy, H.N. Zerby, and F.L. Fluharty

96 Effects of Supplementing Ewes with a d-α-Tocopherol on Serum and Colostrum Immunoglobulin G Titers and Preweaning Lamb Performance
 C.L. Schultz, T.T. Ross, and M.W. Salisbury

101 Comparing Indicators of Sheep Grazing Leafy Spurge and Perennial Grasses
 Bret E. Olson, and Roseann T. Wallander

109 Research Note: Monesin Poisoning in a Sheep Flock
 O. Mendes, F. Mohamed, T. Gull, and A. de la Concha-Bermejillo

114 Case Report: Repeated Injections of Pregnant Mare Serum Gonadotrophin (PMSG) Failed to Induce Antibody Production in Fall Lambing Ewes
 M.A. Diekman, M.K. Neary, and G.R. Kelly
Repeated Injections of Pregnant Mare Serum Gonadotrophin (PMSG) Failed to Induce Antibody Production in Fall Lambing Ewes

M.A. Diekman, M.K. Neary and G.R. Kelly

Pregnant Mare Serum Gonadotrophin (PMSG) is commonly used to induce estrus/puberty or superovulate beef cows (Gonzalez et al., 1994), dairy cows (Kummer et al., 1980; Saumande et al., 1984), gilts or sows (Holtz and Schlieper, 1991) or ewes (Evans and Robinson, 1980; Jabbour and Evans, 1990). Across species, variation in the success of recovering viable ova or embryos following PMSG can be attributed to hormonal profiles postinjection (Bevers and Dieleman, 1987), age of treated animal (Lerner et al., 1986) or day of the cycle on which treatment is administered (Moor et al., 1984). Reduction in time of activity of PMSG has been attempted by administering PMSG antibodies, but success has been variable (Kummer et al., 1980; Jabbour and Evans, 1990; Kirkwood et al., 1994). Another factor that diminishes the effectiveness of inducing ovulation is the number of superovulatory treatments to which an animal has been subjected (Christie et al., 1979; Moor et al., 1984). The objective of this study was to examine whether conception rate of ewes induced to ovulate out of season in successive years could be attributed to presence of circulating antibodies to PMSG.

During three successive years, Suffolk and Rambouillet x Dorset ewes were implanted with Synchro-Mate-B® (SMB; CEVA Laboratories, Overland Park, KS) implants for 10 days and then injected with PMSG (Dr. Steve Webel, Animal Production Associates, Cropsey, IL) to induce estrus out of season (last two weeks of May). Due to the difference in body weights of the ewes, the white-faced ewes were injected with 500 IU of PMSG and the Suffolk ewes were injected with 750 IU of PMSG (average was 10.8 IU PMSG/kg body weight).

In the first year of the study, 27 of 55 ewes that received PMSG lambed in the fall. After weaning, blood samples were drawn and placed on ice and stored at 4°C for six hours. Serum was decanted after centrifugation at 1,500 x g for 30 minutes and stored at -20°C until assayed for presence of antibodies for PMSG.

In years 2 and 3, the majority of the ewes were again injected with PMSG. Sera were obtained at three times from each of the ewes: (1) one day before SMB implants were inserted, (2) Day 20 after PMSG was injected and (3) Day 40 after mating following ultrasound pregnancy test.

After all sera samples were collected for the year, they were assayed for PMSG antibodies in a single assay. Difference between binding of radioiodinated PMSG in 50 ml of sera with and without 250 ng unlabeled PMSG was used to quantitate presence of PMSG antibodies. Binding of PMSG to antibody provided by Dr. A.F. Parlow (Lot #61141575; 7600 CPM bound to 1:20,000 dilution) was used as positive control for binding in all assays. Difference in CPMS bound in sera from pregnant ewes vs. open ewes were tested for significance by general linear models procedures (SAS, 1989).

Induction of out-of-season breeding with SMB implants and PMSG injection was consistent over the 3-year treatment period. Percentage of ewes that were pregnant during years 1, 2 and 3 were 49.1, 48.0 and 45.0%, respectively.

Presence of antibodies in sera of ewes that were pregnant or open after repeated injections of PMSG are presented in Table 1. Between open and pregnant ewes, CPM bound in 50 ml of sera were similar (P > 0.05). Of all the ewes treated with PMSG, four exhibited sera that bound > 4,000 CPM. Two of the four ewes were pregnant. These data indicate that failure of ewes to become pregnant after repeated injections of PMSG to induce out of season breeding is not due to immunoneutralization of PMSG.

The usefulness of embryo transfer programs are dependent upon an effective superovulation treatment (Holtz and Schlieper, 1991; Kummer et al., 1980). To induce out of season breeding (Evans and Robinson, 1980), a consistent response is needed before the technology can be adopted by commercial producers. Attempts to limit the biological activity of PMSG as a supplemental ovulatory tool by administering antisera to PMSG has yielded unsatisfactory results in enhancing pregnancy rates (Holtz and Schlieper, 1991; Kirkwood and Thacker, 1994). Injection of anti-PMSG in cattle did result in greater corpora lutea and fewer unovulated follicles (Gonzalez et al., 1994) or an improvement in quality of embryos (Saumande et al., 1984).
Variable superovulatory responses may be related to production of PMSG antibodies in animals that are repeatedly injected with PMSG (Jainudeen et al., 1966; Youngs, 1992). In 1965, Hafez et al. evoked a response when cows were treated with PMSG the first and second times, but not of the third and fourth injection. Previously, it had been reported that various gonadotrophins evoked a progressive deadline in ovarian response up to six successive ovulations (Willet et al., 1953). When dairy cows were given various treatments using PMSG and prostaglandin at seven to nine week intervals, a poor superovulatory response was observed (Saumande and Chupin, 1977). Superovulation of 14 heifers five to 10 times using PMSG and prostaglandin in a standardized regime at an interval of approximately 42 days indicated that a significant fall in near ovulation rate occurred between the first and second treatment but not between the second and subsequent treatments (Christie et al., 1979). When normal cows and problem breeder cows were injected repeatedly with PMSG, the proportion of viable embryos was higher for normal cows, but there was no effect of repeated injections in either normal or problem cows (Moore et al., 1984). In each of the above studies, sera were not examined for presence of PMSG antibodies.

Even though immunoneutralization has been speculated to be the reason for infertility in ewes bred out of season or for superovulated cows to become refractory to PMSG (Youngs, 1992), it is unlikely to be the source of the problem. To purposefully generate usable titers of antibody for radioimmunoassay or immunocytochemistry, adjuvants are used to enhance the changes for an immunobiologically response. In addition, booster injections are given to amplify the production of antibodies. Certainly, it is unlikely a yearly injection of PMSG to ewes without adjuvant would be able to challenge the immune system sufficiently to generate great quantities of antibodies and evoke an effective immunoneutralization.

Acknowledgements
Funding support by the Indiana Sheep and Wool Market Development Council. Journal paper No. 16,627, Purdue University Agriculture Research Programs.

Literature Cited

Table 1. Presence of PMSG antibodies in ewe sera.

<table>
<thead>
<tr>
<th>Year</th>
<th>Trt.</th>
<th>No. of Ewes</th>
<th>Time of bleeding* CPMS/50 µl sera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Repro. Status (N)</td>
</tr>
<tr>
<td>2</td>
<td>PMS</td>
<td>75</td>
<td>Preg (36)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open (39)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open (15)</td>
</tr>
<tr>
<td>3</td>
<td>PMS</td>
<td>40</td>
<td>Preg (18)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open (22)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Open (9)</td>
</tr>
</tbody>
</table>

* 1 = Sera obtained the day before SMB implants inserted.
 2 = Sera obtained on Day 20 after PMS injection.
 3 = Sera obtained on Day 40 after mating during ultrasound pregnancy test.